Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Oecologia ; 204(2): 257-277, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326516

ABSTRACT

We compared three sets of highly resolved food webs with and without parasites for a subarctic lake system corresponding to its pelagic and benthic compartments and the whole-lake food web. Key topological food-web metrics were calculated for each set of compartments to explore the role parasites play in food-web topology in these highly contrasting webs. After controlling for effects from differences in web size, we observed similar responses to the addition of parasites in both the pelagic and benthic compartments demonstrated by increases in trophic levels, linkage density, connectance, generality, and vulnerability despite the contrasting composition of free-living and parasitic species between the two compartments. Similar effects on food-web topology can be expected with the inclusion of parasites, regardless of the physical characteristics and taxonomic community compositions of contrasting environments. Additionally, similar increases in key topological metrics were found in the whole-lake food web that combines the pelagic and benthic webs, effects that are comparable to parasite food-web analyses from other systems. These changes in topological metrics are a result of the unique properties of parasites as infectious agents and the links they participate in. Trematodes were key contributors to these results, as these parasites have distinct characteristics in aquatic systems that introduce new link types and increase the food web's generality and vulnerability disproportionate to other parasites. Our analysis highlights the importance of incorporating parasites, especially trophically transmitted parasites, into food webs as they significantly alter key topological metrics and are thus essential for understanding an ecosystem's structure and functioning.


Subject(s)
Ecosystem , Parasites , Animals , Food Chain , Lakes , Food
2.
Sci Rep ; 13(1): 16749, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798382

ABSTRACT

High-latitude aquatic ecosystems are responding to rapid climate warming. A longer ice-free season with higher water temperatures may accelerate somatic growth in lake ectotherms, leading to widespread ecological implications. In fish, rising temperatures are expected to boost rates of food intake and conversion, and predictions based on empirical relationships between temperature and growth suggest a substantial increase in fish growth rates during the last decades. Fish abundance negatively affects growth by limiting food availability. This field study addresses the effects of climate warming on growth of a subarctic population of Arctic charr (Salvelinus alpinus (L.) over nearly 40 years. Juvenile growth of 680 individuals of Arctic charr, was reconstructed by sclerochronological analysis using sagittal otoliths sampled annually from the early 1980s to 2016. Statistical modelling revealed a positive effect of water temperature, and a negative effect of abundance on somatic growth in juvenile individuals. Temperature dependence in growth was significant for average and fast-growing individuals across all investigated age classes. These findings suggest that, as temperatures rise, somatic growth of Arctic charr will increase in high latitude lakes. Climate warming will thus influence cold water fish life history and size-structured interactions, with important consequences for their populations and ecosystems.


Subject(s)
Ecosystem , Lakes , Animals , Climate , Temperature , Arctic Regions , Fishes , Water
3.
Ecol Evol ; 13(6): e10185, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37293123

ABSTRACT

High latitude ecosystems are experiencing the most rapid warming on earth, expected to trigger a diverse array of ecological responses. Climate warming affects the ecophysiology of fish, and fish close to the cold end of their thermal distribution are expected to increase somatic growth from increased temperatures and a prolonged growth season, which in turn affects maturation schedules, reproduction, and survival, boosting population growth. Accordingly, fish species living in ecosystems close to their northern range edge should increase in relative abundance and importance, and possibly displace cold-water adapted species. We aim to document whether and how population-level effects of warming are mediated by individual-level responses to increased temperatures, shift community structure, and composition in high latitude ecosystems. We studied 11 cool-water adapted perch populations in communities dominated by cold-water adapted species (whitefish, burbot, and charr) to investigate changes in the relative importance of the cool-water perch during the last 30 years of rapid warming in high latitude lakes. In addition, we studied the individual-level responses to warming to clarify the potential mechanisms underlying the population effects. Our long-term series (1991-2020) reveal a marked increase in numerical importance of the cool-water fish species, perch, in ten out of eleven populations, and in most fish communities perch is now dominant. Moreover, we show that climate warming affects population-level processes via direct and indirect temperature effects on individuals. Specifically, the increase in abundance arises from increased recruitment, faster juvenile growth, and ensuing earlier maturation, all boosted by climate warming. The speed and magnitude of the response to warming in these high latitude fish communities strongly suggest that cold-water fish will be displaced by fish adapted to warmer water. Consequently, management should focus on climate adaptation limiting future introductions and invasions of cool-water fish and mitigating harvesting pressure on cold-water fish.

4.
Environ Toxicol Chem ; 42(4): 873-887, 2023 04.
Article in English | MEDLINE | ID: mdl-36727562

ABSTRACT

Mercury (Hg) is a serious concern for aquatic ecosystems because it may biomagnify to harmful concentrations within food webs and consequently end up in humans that eat fish. However, the trophic transfer of mercury through the aquatic food web may be impacted by several factors related to network complexity and the ecology of the species present. The present study addresses the interplay between trophic ecology and mercury contamination in the fish communities of two lakes in a pollution-impacted subarctic watercourse, exploring the role of both horizontal (feeding habitat) and vertical (trophic position) food web characteristics as drivers for the Hg contamination in fish. The lakes are located in the upper and lower parts of the watercourse, with the lower site located closer to, and downstream from, the main pollution source. The lakes have complex fish communities dominated by coregonids (polymorphic whitefish and invasive vendace) and several piscivorous species. Analyses of habitat use, stomach contents, and stable isotope signatures (δ15 N, δ13 C) revealed similar food web structures in the two lakes except for a few differences chiefly related to ecological effects of the invasive vendace. The piscivores had higher Hg concentrations than invertebrate-feeding fish. Concentrations increased with size and age for the piscivores and vendace, whereas habitat differences were of minor importance. Most fish species showed significant differences in Hg concentrations between the lakes, the highest values typically found in the downstream site where the biomagnification rate also was higher. Mercury levels in piscivorous fish included concentrations that exceed health authorization limits, with possible negative implications for fishing and human consumption. Our findings accentuate the importance of acquiring detailed knowledge of the drivers that can magnify Hg concentrations in fish and how these may vary within and among aquatic systems, to provide a scientific basis for adequate management strategies. Environ Toxicol Chem 2023;42:873-887. © 2023 SETAC.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Humans , Mercury/analysis , Ecosystem , Bioaccumulation , Environmental Monitoring , Invertebrates , Food Chain , Lakes/chemistry , Water Pollutants, Chemical/analysis , Fishes
5.
Pathogens ; 11(6)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35745501

ABSTRACT

The emergence of cercariae from infected mollusks is considered one of the most important adaptive strategies for maintaining the trematode life cycle. Short transmission opportunities of cercariae are often compensated by periodic daily rhythms in the cercarial release. However, there are virtually no data on the cercarial emergence of bird schistosomes from freshwater ecosystems in northern latitudes. We investigated the daily cercarial emergence rhythms of the bird schistosome Trichobilharzia sp. "peregra" from the snail host Radix balthica in a subarctic lake under both natural and laboratory seasonal conditions. We demonstrated a circadian rhythm with the highest emergence during the morning hours, being seasonally independent of the photo- and thermo-period regimes of subarctic summer and autumn, as well as relatively high production of cercariae at low temperatures typical of northern environments. These patterns were consistent under both field and laboratory conditions. While light intensity triggered and prolonged cercarial emergence, the temperature had little effect on cercarial rhythms but regulated seasonal output rates. This suggests an adaptive strategy of bird schistosomes to compensate for the narrow transmission window. Our results fill a gap in our knowledge of the transmission dynamics and success of bird schistosomes under high latitude conditions that may serve as a basis for elucidating future potential risks and implementing control measures related to the spread of cercarial dermatitis due to global warming.

6.
Parasitology ; 149(4): 457-468, 2022 04.
Article in English | MEDLINE | ID: mdl-35331353

ABSTRACT

Cercarial activity and survival are crucial traits for the transmission of trematodes. Temperature is particularly important, as faster depletion of limited cercarial energy reserves occurs at high temperatures. Seasonal climate conditions in high latitude regions may be challenging to complete trematode life cycle during the 6-month ice-free period, but temperature effects on the activity and survival of freshwater cercariae have not been previously identified. After experimentally simulating natural subarctic conditions during warmer and colder months (13 and 6°C), a statistical approach identifying changes in the tendency of cercarial activity loss and mortality data was used to detect differences in three trematode genera, represented by four taxa (Diplostomum spp., Apatemon spp., small- and large-sized Plagiorchis spp.). A strong temperature-dependent response was identified in both activity loss and mortality in all taxa, with Diplostomum spp. cercariae showing the most gradual changes compared to other taxa. Furthermore, whilst activity loss and mortality dynamics could not be divided into 'fish- vs invertebrate-infecting cercariae' groups, the detected taxa-specific responses in relation to life-history traits indicate the swimming behaviour of cercariae and energy allocation among larvae individuals as the main drivers. Cercariae exploit the short transmission window that allows a stable continuance of trematodes' life cycles in high-latitude freshwater ecosystems.


Subject(s)
Ecosystem , Trematoda , Animals , Cercaria/physiology , Fresh Water , Temperature , Trematoda/physiology
7.
J Anim Ecol ; 91(1): 154-169, 2022 01.
Article in English | MEDLINE | ID: mdl-34657292

ABSTRACT

Competition for shared resources is commonly assumed to restrict population-level niche width of coexisting species. However, the identity and abundance of coexisting species, the prevailing environmental conditions, and the individual body size may shape the effects of interspecific interactions on species' niche width. Here we study the effects of interspecific and intraspecific interactions, lake area and altitude, and fish body size on the trophic niche width and resource use of a generalist predator, the littoral-dwelling large, sparsely rakered morph of European whitefish (Coregonus lavaretus; hereafter LSR whitefish). We use stable isotope, diet and survey fishing data from 14 subarctic lakes along an environmental gradient in northern Norway. The isotopic niche width of LSR whitefish showed a humped-shaped relationship with increasing relative abundance of sympatric competitors, suggesting widest population niche at intermediate intensity of interspecific interactions. The isotopic niche width of LSR whitefish tended to decrease with increasing altitude, suggesting reduced niche in colder, less productive lakes. LSR whitefish typically shifted to a higher trophic position and increased reliance on littoral food resources with increasing body size, although between-lake differences in ontogenetic niche shifts were evident. In most lakes, LSR whitefish relied less on littoral food resources than coexisting fishes and the niche overlap between sympatric competitors was most evident among relatively large individuals (>250 mm). Individual niche variation was highest among >200 mm long LSR whitefish, which likely have escaped the predation window of sympatric predators. We demonstrate that intermediate intensity of interspecific interactions may broaden species' niche width, whereas strong competition for limited resources and high predation risk may suppress niche width in less productive environments. Acknowledging potential humped-shaped relationships between population niche width and interspecific interactions can help us understand species' responses to environmental disturbance (e.g. climate change and species invasions) as well as the driving forces of niche specialization.


Subject(s)
Salmonidae , Animals , Body Size , Lakes , Predatory Behavior , Salmonidae/physiology , Sympatry
8.
Sci Rep ; 11(1): 17396, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462480

ABSTRACT

Maintaining standing genetic variation is a challenge in human-dominated landscapes. We used genetic (i.e., 16 short tandem repeats) and morphological (i.e., length and weight) measurements of 593 contemporary and historical brown trout (Salmo trutta) samples to study fine-scale and short-term impacts of different management practices. These had changed from traditional breeding practices, using the same broodstock for several years, to modern breeding practices, including annual broodstock replacement, in the transnational subarctic Pasvik River. Using population genetic structure analyses (i.e., Bayesian assignment tests, DAPCs, and PCAs), four historical genetic clusters (E2001A-D), likely representing family lineages resulting from different crosses, were found in zone E. These groups were characterized by consistently lower genetic diversity, higher within-group relatedness, lower effective population size, and significantly smaller body size than contemporary stocked (E2001E) and wild fish (E2001F). However, even current breeding practices are insufficient to prevent genetic diversity loss and morphological changes as demonstrated by on average smaller body sizes and recent genetic bottleneck signatures in the modern breeding stock compared to wild fish. Conservation management must evaluate breeding protocols for stocking programs and assess if these can preserve remaining natural genetic diversity and morphology in brown trout for long-term preservation of freshwater fauna.


Subject(s)
Genetic Variation , Trout/genetics , Animals , Bayes Theorem , Discriminant Analysis , Genetics, Population , Genotype , Microsatellite Repeats/genetics , Norway , Principal Component Analysis , Rivers , Trout/anatomy & histology
9.
J Anim Ecol ; 90(4): 978-988, 2021 04.
Article in English | MEDLINE | ID: mdl-33481253

ABSTRACT

Free-living parasite life stages may contribute substantially to ecosystem biomass and thus represent a significant source of energy flow when consumed by non-host organisms. However, ambient temperature and the predator's own infection status may modulate consumption rates towards parasite prey. We investigated the combined effects of temperature and predator infection status on the consumer functional response of three-spined sticklebacks towards the free-living cercariae stages of two common freshwater trematode parasites (Plagiorchis spp., Trichobilharzia franki). Our results revealed genera-specific functional responses and consumption rates towards each parasite prey: Type II for Plagiorchis spp. and Type III for T. franki, with an overall higher consumption rate on T. franki. Elevated temperature (13°C) increased the consumption rate on Plagiorchis spp. prey for sticklebacks with mild cestode infections (<5% fish body weight) only. High consumption of cercarial prey by sticklebacks may impact parasite population dynamics by severely reducing or even functionally eliminating free-living parasite life stages from the environment. This supports the potential role of fish as biocontrol agents for cercariae with similar dispersion strategies, in instances where functional response relationships have been established. Our study demonstrates how parasite consumption by non-host organisms may be shaped by traits inherent to parasite transmission and dispersal, and emphasises the need to consider free-living parasite life stages as integral energy resources in aquatic food webs.


Subject(s)
Cestode Infections , Smegmamorpha , Trematoda , Animals , Cercaria , Ecosystem , Host-Parasite Interactions
10.
Ecol Evol ; 10(21): 12385-12394, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33209296

ABSTRACT

Amphipods are often key species in aquatic food webs due to their functional roles in the ecosystem and as intermediate hosts for trophically transmitted parasites. Amphipods can also host many parasite species, yet few studies address the entire parasite community of a gammarid population, precluding a more dynamic understanding of the food web. We set out to identify and quantify the parasite community of Gammarus lacustris to understand the contributions of the amphipod and its parasites to the Takvatn food web. We identified seven parasite taxa: a direct life cycle gregarine, Rotundula sp., and larval stages of two digenean trematode genera, two cestodes, one nematode, and one acanthocephalan. The larval parasites use either birds or fishes as final hosts. Bird parasites predominated, with trematode Plagiorchis sp. having the highest prevalence (69%) and mean abundance (2.7). Fish parasites were also common, including trematodes Crepidostomum spp., nematode Cystidicola farionis, and cestode Cyathocephalus truncatus (prevalences 13, 6, and 3%, respectively). Five parasites depend entirely on G. lacustris to complete their life cycle. At least 11.4% of the overall parasite diversity in the lake was dependent on G. lacustris, and 16% of the helminth diversity required or used the amphipod in their life cycles. These dependencies reveal that in addition to being a key prey item in subarctic lakes, G. lacustris is also an important host for maintaining parasite diversity in such ecosystems.

11.
Parasitol Res ; 119(12): 4271-4276, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32845358

ABSTRACT

Direct consumption on free-living cercariae stages of trematodes by non-host organisms interferes with trematode transmission and leads to reduced infections in the next suitable hosts. Consumer functional responses provide a useful tool to examine relationships between consumption rates and ecologically relevant prey densities, whilst also accounting for abiotic factors that likely influence consumption rates. We investigated how temperature influences the consumer functional response of the amphipod Gammarus lacustris towards the cercariae of three freshwater trematodes (Diplostomum, Apatemon and Trichobilharzia). Amphipods displayed different functional responses towards the parasites, with Type II responses for Diplostomum and Type I responses for Apatemon prey. Temperature did not alter the consumption rate of the amphipod predator. Trichobilharzia was likely consumed at similar proportions as Diplostomum; however, this could not be fully evaluated due to low replication. Whilst Type II responses of invertebrate predators are common to various invertebrate prey types, this is the first time a non-filter feeding predator has been shown to exhibit Type I response towards cercarial prey. The prey-specific consumption patterns of amphipods were related to cercarial distribution in the water column rather than to the size of cercariae or temperature influence. The substantial energy flow into food webs by non-host consumer organisms highlights the importance of understanding the mechanisms that modulate functional responses and direct predation in the context of parasitic organisms.


Subject(s)
Amphipoda/physiology , Predatory Behavior/physiology , Trematoda/physiology , Animals , Cercaria/classification , Cercaria/growth & development , Cercaria/physiology , Food Chain , Predatory Behavior/classification , Species Specificity , Temperature , Trematoda/classification , Trematoda/growth & development , Trematode Infections/parasitology , Trematode Infections/transmission
12.
Int J Parasitol Parasites Wildl ; 12: 155-164, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32577375

ABSTRACT

Ontogenetic dietary shifts are common in fish and often impact trophically transmitted parasite communities. How parasite species composition and relative abundances change among size classes, and at what rate these changes occur, is rarely examined. Hosts with a broad trophic niche are potentially exposed to a large variety of parasite species. The degree of ontogenetic changes in parasite species composition versus changes in parasite abundance should suggestively differ between thropically generalist and specialist host species. In the present study, we explore ontogenetic dietary shifts and their impact on species composition and relative abundance of intestinal parasites in two sympatric salmonid fish species, Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) caught in the littoral habitat of a subarctic lake. Our results highlight a close interplay between ontogenetic dietary niche shifts and alterations in the acquisition of trophically transmitted parasites, leading to host-specific differences in the component community of parasites. Ontogenetic changes in the intestinal parasite community related to dietary niche shifts were distinct but less pronounced in Arctic charr than in brown trout due to a broader and more consistent dietary niche of the former and an ontogenetic shift toward piscivory in the latter. At the component community level, changes in parasite assemblages of both host species were driven by a faster increase in the heterogeneity of parasite relative abundance than in the compositional heterogeneity, a pattern that partly may be related to a rather species-poor parasite community of this subarctic study system. Separating compositional heterogeneity from heterogeneity in relative parasite abundance is important to understand how size-dependent variability shapes parasite communities of host populations.

13.
Ecol Evol ; 10(9): 4031-4043, 2020 May.
Article in English | MEDLINE | ID: mdl-32489629

ABSTRACT

Changes in abiotic and biotic factors between seasons in subarctic lake systems are often profound, potentially affecting the community structure and population dynamics of parasites over the annual cycle. However, few winter studies exist and interactions between fish hosts and their parasites are typically confined to snapshot studies restricted to the summer season whereas host-parasite dynamics during the ice-covered period rarely have been explored. The present study addresses seasonal patterns in the infections of intestinal parasites and their association with the diet of sympatric living Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in Lake Takvatn, a subarctic lake in northern Norway. In total, 354 Arctic charr and 203 brown trout were sampled from the littoral habitat between June 2017 and May 2018. Six trophically transmitted intestinal parasite taxa were identified and quantified, and their seasonal variations were contrasted with dietary information from both stomachs and intestines of the fish. The winter period proved to be an important transmission window for parasites, with increased prevalence and intensity of amphipod-transmitted parasites in Arctic charr and parasites transmitted through fish prey in brown trout. In Arctic charr, seasonal patterns in parasite infections resulted mainly from temporal changes in diet toward amphipods, whereas host body size and the utilization of fish prey were the main drivers in brown trout. The overall dynamics in the community structure of parasites chiefly mirrored the seasonal dietary shifts of their fish hosts.

14.
Sci Rep ; 10(1): 7394, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355195

ABSTRACT

Modern speciation theory has greatly benefited from a variety of simple mathematical models focusing on the conditions and patterns of speciation and diversification in the presence of gene flow. Unfortunately the application of general theoretical concepts and tools to specific ecological systems remains a challenge. Here we apply modeling tools to better understand adaptive divergence of whitefish during the postglacial period in lakes of northern Fennoscandia. These lakes harbor up to three different morphs associated with the three major lake habitats: littoral, pelagic, and profundal. Using large-scale individual-based simulations, we aim to identify factors required for in situ emergence of the pelagic and profundal morphs in lakes initially colonized by the littoral morph. The importance of some of the factors we identify and study - sufficiently large levels of initial genetic variation, size- and habitat-specific mating, sufficiently large carrying capacity of the new niche - is already well recognized. In addition, our model also points to two other factors that have been largely disregarded in theoretical studies: fitness-dependent dispersal and strong predation in the ancestral niche coupled with the lack of it in the new niche(s). We use our theoretical results to speculate about the process of diversification of whitefish in Fennoscandia and to identify potentially profitable directions for future empirical research.


Subject(s)
Adaptation, Physiological , Ecosystem , Models, Biological , Predatory Behavior , Salmonidae/physiology , Animals , Finland , Lakes
15.
J Fish Biol ; 95(6): 1364-1373, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31589769

ABSTRACT

Studies on the feeding ecology of fish are essential for exploring and contrasting trophic interactions and population and community dynamics within and among aquatic ecosystems. In this respect, many different methods have been adopted for the analysis of fish stomach contents. No consensus has, however, been reached for a standardised methodology despite that for several decades there has been an ongoing debate about which methodical approaches that should be preferred. Here, we critically review and scrutinise methods, addressing their strengths and weaknesses and emphasising inherent problems and possible pitfalls in their use. Although our critical assessment reveals that no completely ideal approach exists, appropriate and reliable procedures can be adopted through careful considerations and implementation. In particular, we advocate that different objectives require different methodical approaches and the choice of method should therefore be closely linked to the research questions that are addressed. For a standardisation of methods, we recommend a combination of the relative-fullness and presence-absence methods as the optimal approach for the commonly applied feeding studies addressing relative dietary composition in terms of prey diversity and abundance. Additionally, we recommend the gravimetric method for objectives related to the quantification of food consumption rates and the numerical method for prey selection studies. DNA-based dietary analysis provides a new and promising complementary approach to visual examination of stomach contents, although some technical challenges still exist. The suggested method standardisation facilitates comparisons across species, ecosystems and time and will enhance the applicability and benefits of fish feeding studies in trophic ecology research.


Subject(s)
Fishes , Food Chain , Gastrointestinal Contents , Animals , Diet/veterinary , Ecosystem
16.
PLoS One ; 14(8): e0221338, 2019.
Article in English | MEDLINE | ID: mdl-31430331

ABSTRACT

Resource polymorphism-whereby ancestral generalist populations give rise to several specialised morphs along a resource gradient-is common where species colonise newly formed ecosystems. This phenomenon is particularly well documented in freshwater fish populations inhabiting postglacial lakes formed at the end of the last ice age. However, knowledge on how such differential exploitation of resources across contrasting habitats might be reflected in the biochemical compositions of diverging populations is still limited, though such patterns might be expected. Here, we aimed to assess how fatty acids (FA)-an important biochemical component of animal tissues-diverged across a polymorphic complex of European whitefish (Coregonus lavaretus) and their closely related monomorphic specialist congener vendace (Coregonus albula) inhabiting a series of six subarctic lakes in northern Fennoscandia. We also explored patterns of FA composition in whitefish's predators and invertebrate prey to assess how divergence in trophic ecology between whitefish morphs would relate to biochemical profiles of their key food web associates. Lastly, we assessed how information on trophic divergence provided by differential FA composition compared to evidence of resource polymorphism retrieved from more classical stomach content and stable isotopic (δ13C, δ15N) information. Examination of stomach contents provided high-resolution information on recently consumed prey, whereas stable isotopes indicated broad-scale patterns of benthic-pelagic resource use differentiation at different trophic levels. Linear discriminant analysis based on FA composition was substantially more successful in identifying whitefish morphs and their congener vendace as distinct groupings when compared to the other two methods. Three major FA (myristic acid, stearic acid, and eicosadienoic acid) proved particularly informative, both in delineating coregonid groups, and identifying patterns of pelagic-benthic feeding throughout the wider food web. Myristic acid (14:0) content and δ13C ratios in muscle tissue were positively correlated across fish taxa, and together provided the clearest segregation of fishes exploiting contrasting pelagic and benthic niches. In general, our findings highlight the potential of FA analysis for identifying resource polymorphism in animal populations where this phenomenon occurs, and suggest that this technique may provide greater resolution than more traditional methods typically used for this purpose.


Subject(s)
Fatty Acids/analysis , Feeding Behavior/physiology , Food Chain , Nutritive Value/physiology , Salmonidae/physiology , Animals , Gastrointestinal Contents/chemistry , Lakes , Scandinavian and Nordic Countries
17.
Biol Rev Camb Philos Soc ; 94(5): 1786-1808, 2019 10.
Article in English | MEDLINE | ID: mdl-31215138

ABSTRACT

A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.


Subject(s)
Biological Evolution , Developmental Biology , Ecology , Fishes , Adaptation, Biological , Adaptation, Physiological , Animals , Biodiversity , Ecosystem , Environment , Fishes/anatomy & histology , Fishes/classification , Fishes/physiology , Fresh Water , Genetic Speciation , Models, Animal , Phenotype , Polymorphism, Genetic , Selection, Genetic
18.
Ecol Evol ; 9(10): 6068-6081, 2019 May.
Article in English | MEDLINE | ID: mdl-31161019

ABSTRACT

Habitat discontinuity, anthropogenic disturbance, and overharvesting have led to population fragmentation and decline worldwide. Preservation of remaining natural genetic diversity is crucial to avoid continued genetic erosion. Brown trout (Salmo trutta L.) is an ideal model species for studying anthropogenic influences on genetic integrity, as it has experienced significant genetic alterations throughout its natural distribution range due to habitat fragmentation, overexploitation, translocations, and stocking. The Pasvik River is a subarctic riverine system shared between Norway, Russia, and Finland, subdivided by seven hydroelectric power dams that destroyed about 70% of natural spawning and nursing areas. Stocking is applied in certain river parts to support the natural brown trout population. Adjacent river segments with different management strategies (stocked vs. not stocked) facilitated the simultaneous assessment of genetic impacts of dams and stocking based on analyses of 16 short tandem repeat loci. Dams were expected to increase genetic differentiation between and reduce genetic diversity within river sections. Contrastingly, stocking was predicted to promote genetic homogenization and diversity, but also potentially lead to loss of private alleles and to genetic erosion. Our results showed comparatively low heterozygosity and clear genetic differentiation between adjacent sections in nonstocked river parts, indicating that dams prevent migration and contribute to genetic isolation and loss of genetic diversity. Furthermore, genetic differentiation was low and heterozygosity relatively high across stocked sections. However, in stocked river sections, we found signatures of recent bottlenecks and reductions in private alleles, indicating that only a subset of individuals contributes to reproduction, potentially leading to divergence away from the natural genetic state. Taken together, these results indicate that stocking counteracts the negative fragmentation effects of dams, but also that stocking practices should be planned carefully in order to ensure long-term preservation of natural genetic diversity and integrity in brown trout and other species in regulated river systems.

19.
Environ Sci Technol ; 53(4): 1834-1843, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30636402

ABSTRACT

Temporally (1965-2015) and spatially (55°-70°N) extensive records of total mercury (Hg) in freshwater fish showed consistent declines in boreal and subarctic Fennoscandia. The database contains 54 560 fish entries ( n: pike > perch ≫ brown trout > roach ≈ Arctic charr) from 3132 lakes across Sweden, Finland, Norway, and Russian Murmansk area. 74% of the lakes did not meet the 0.5 ppm limit to protect human health. However, after 2000 only 25% of the lakes exceeded this level, indicating improved environmental status. In lakes where local pollution sources were identified, pike and perch Hg concentrations were significantly higher between 1965 and 1990 compared to values after 1995, likely an effect of implemented reduction measures. In lakes where Hg originated from long-range transboundary air pollution (LRTAP), consistent Hg declines (3-7‰ per year) were found for perch and pike in both boreal and subarctic Fennoscandia, suggesting common environmental controls. Hg in perch and pike in LRTAP lakes showed minimal declines with latitude, suggesting that drivers affected by temperature, such as growth dilution, counteracted Hg loading and food web exposure. We recommend that future fish Hg monitoring sampling design should include repeated sampling and collection of pollution history, water chemistry, fish age, and stable isotopes to enable evaluation of emission reduction policies.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Environmental Monitoring , Finland , Fishes , Humans , Lakes , Norway , Russia , Sweden
20.
Biol Rev Camb Philos Soc ; 94(2): 539-554, 2019 04.
Article in English | MEDLINE | ID: mdl-30251433

ABSTRACT

Ontogenetic dietary shifts (ODSs), the changes in diet utilisation occurring over the life span of an individual consumer, are widespread in the animal kingdom. Understanding ODSs provides fundamental insights into the biological and ecological processes that function at the individual, population and community levels, and is critical for the development and testing of hypotheses around key concepts in trophic theory on model organisms. Here, we synthesise historic and contemporary research on ODSs in fishes, and identify where further research is required. Numerous biotic and abiotic factors can directly or indirectly influence ODSs, but the most influential of these may vary spatially, temporally and interspecifically. Within the constraints imposed by prey availability, we identified competition and predation risk as the major drivers of ODSs in fishes. These drivers do not directly affect the trophic ontogeny of fishes, but may have an indirect effect on diet trajectories through ontogenetic changes in habitat use and concomitant changes in prey availability. The synthesis provides compelling evidence that ODSs can have profound ecological consequences for fish by, for example, enhancing individual growth and lifetime reproductive output or reducing the risk of mortality. ODSs may also influence food-web dynamics and facilitate the coexistence of sympatric species through resource partitioning, but we currently lack a holistic understanding of the consequences of ODSs for population, community and ecosystem processes and functioning. Studies attempting to address these knowledge gaps have largely focused on theoretical approaches, but empirical research under natural conditions, including phylogenetic and evolutionary considerations, is required to test the concepts. Research focusing on inter-individual variation in ontogenetic trajectories has also been limited, with the complex relationships between individual behaviour and environmental heterogeneity representing a particularly promising area for future research.


Subject(s)
Diet/veterinary , Fishes/physiology , Animals , Body Size , Competitive Behavior , Diet/trends , Ecosystem , Feeding Behavior , Fishes/growth & development , Fishes/metabolism , Food Chain , Gastrointestinal Tract/anatomy & histology , Gills/anatomy & histology , Predatory Behavior , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...